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Circular Arc Helical Gears: Generation, Geometry, Precision
and Adjustment to Errors, Computer Aided Simulation of Conditions
of Meshing and Bearing Contact.

by Faydor L. Litvin
Professor of Mechanical Engineering
Member ASME

Chung-Biau Tsay
Research Assistant
University of Illinois at Chicago, IL 60680

1. Introduction and Principles of Generation

Circular arc helical gears (Wildhaber - Novikov gears) have
the following advantages over involute helical gears: (a) there
is reduced contacting stresses and (b) the conditions of
lubrication are better. The disadvantages of the circular arc
helical gears are: (a) higer bending stresses, (b) the |
sensitivity to the change of center distance and (¢) a more
complicated shape of the tool. The bending stresses can be
reduced by appropriate proportions of tooth elements. The effect
of dislocation of the bearing contact due to the change of the
gear center distance can be reduced by appropriate relations
between the principal curvatures of the gears and may even be
compensated technologically. Circular arc gears can be
successfully applied in gear trains with limited weight. The
success of Westland Helicopter Co. which designed and
manufactured these gears is the best evidence of this statement.

The main advantages of the discussed gears-reduced
contacting stresses and improved conditions of lubrication - are

the result of special conditions of the contact of gear tooth




surfaces and their meshing. Surfaces of the gear teeth contact
each other at a point at every instant, instead of a line; the
relations between the principal curvatures of surfaces are free
of the limitations which exist for gears having line contact of
the surfaces; the point of contact (it is the center of the
contacting ellipse) moves over the surface along a helix, and it
is due to this motion of the contact point and a favorable
orientation of the contacting ellipse that the conditions of
lubrication are improved substantially.

Consider that shapesZ1 and 22 are in contact at point M
(Fig. 1.1); 21 and 22 are the cross-sections of gear tooth

surfaces; the instantaneous angular velocity ratio is given by
w(l) 021

Mo~ (& T 0,1
w

It is not excluded thatmlzis not constant, thus my, = f(¢1) where
¢1 is the angle of rotation of gear l. The derivative%%i—-is equal

to zero if and only if the following equation is satisfied

pz-pl = Ap =r1+r2
(pq = ) (py = %) 2 rr,siny

022 (p +hp) + 2 (1.1)

Here: Py .= CoM, Py = CiM where Cq and C, are the centers of

curvatures of shapes I, and r_, respectively; Ap =

1 2
L= 1IM; r = 011 and ry, = 021; wcis the angle formed by the shapes

pz_p].;

normal , n, and line m-m. Equation (1.1) results in that the
difference of curvature radii, Ap = Py = Py dependscn1r1, Lo wc,

%, and Py - Thus, Ap 1is not a free design parameter and we







cannot substantially reduce the contacting stress by minimizing
Ap. This obstacle can be overcome if the gears are designed

as helical gears and the gear tooth surfaces are in point
contact.

Consider that the difference of curvature radii, Ap,
provides optimal conditions for contacting stresses, but does
not satisfy equation (1.1). If the gear tooth surfaces would
be designed as spur or helical gears, whose surfaces are in
line contact, then such geéré would not be able to transform
rotation with the constant angular velocity. But if the gears
are designed as helcial gears whose surfaces are in point con-
tact, then both requirements - the reduction of contacting
stresses and the constancy of gear ratio - can be achieved.

Fig. 1.2 a shows a gear tooth surface of a helical gear.
This surface may be generated by a planar curve I in its screw
motion about axis 0-0.

Consider two cross-section of the gear tooth surface formed
by cutting the surface by two planes, P1 and Pz(Fig. 1.2a,b).

£ (1)

Shapes and 2(2) lie in planes Py and Py respectively. The

location and orientation of 2(2) with respect to Z(l) is deter-
£ (1)

mined by the axial displacement and rotation of in its

screw motion while it generates the screw surface of the gear.

We assume that in such a screw motion of 2(1)

, the gear is at
rest.

Now, consider that two helical gears are in mesh and their
screw surfaces contact each other at point M initially (Fig. 1.2

%*
b). The shapes of gears 1 and 2 have a common normal n at M,

which passes through point I - the point of intersection of the
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instantaneous axis of rotation I - I with the plane P Shape Z‘

1°
of the screw surface of gear 1 will come in contact with the
corresponding shape of gear 2 if the gears will be rotated
through certain angles about their axes. For instance, shape 2(2)
of gear 1 will come in tangency with the mating shape of gear 2
if shape 52)takes the position of 2(3{ This position can be
reached if the gear with its screw surface (thus with the shapes
(1) (2) . . (3) (1)

z and I'“") is rotated about axis 0-0. Shapes I and I have the
same orientation but lie in different plane P, and P,
respectively. In the process of meshing of helical gears with
the type of point contact described above, the gear tooth
surfaces contact each other at every instant at a point along the
line ML, which is parallel to the axes of gear rotations. Line
ML is the line of action of gear tooth surfaces.

It is known that a screw surface of a helical gear may be
generated by a cylindrical surfaceZ% whose generatrix are
parallel to plane 7 and form a certain angle with the gear axis
(Fig 1.3 a). Plane mis the tangent plane to the gear cylinder
of radius r. While the generating surfacezc translates with
plane 7, with velocity v, the gear rotates with angular velocity
w, where w =v ¢+ r. Plane mand the cylinder of radius r are the
axodes.

To generate gears having point contact of their surfaces, we
have to use two generating cylindrical surfaces, zcu) and zéz)
(Fig. 1.3 a), which contact each other along a straight 1line.

While plane 1 translates with velocity v, the gears rotate with

angular velocities, 0}1) and w(z)respectively (Fig. 1.3 D).

~

[e2}







We may imagine that surface I "’ generates the screw surface
of gear 1, and ZJZ) generates the screw surface 22 of gear 2.
The surfaces of helical gears, 21 and22 « Will be in point
contact and their line of action will be the line ML (Fig 1.2
b).

We have to emphasize that surfaces Zc(i) and Zi (i =1,2)
are in line contact and L is generated as an envelope of the
family surfaces ZCHJ . Using two different generating
surfaces,Zc(D and ZC(ZL we may generate screw surfaces for
both helical gears with a point contact of the gear tooth
surfaces, and overcome the limitation of the difference of the
curvatures determined by equation (1.1). The described method of

generation is the key to the problem of synthesis of helical

gears with reduced contacting stresses.

2. Generating Surfaces

Fig. 2.1 shows the normal section of the space of rack
cutter F which generates the tooth of gear 1. The shapes of the
rack cutter for each of its sides represent two circular arcs

f
centered at CF and C;), respectively. The circular arc of
(£) : (f)
F with center atCF

the gear 1 while the circular arc of radius Pp with center at Cp

radius p generates the fillet surface of

generates the working surface. Point(é?) lies in plane ™ (Fig.
1.3).

Fig. 2.2 shows the normal section of the tooth of the rack
cutter P which generates the space of gear 2. The shape of the

rack cutter for each side represents two circular arcs centered
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at CP and C;f), fgfpectively. The circular arc of radius péf)
with center at Cp generates the fillet surface of gear 2
while the circular arc of radius Pp with center at Cp generates
the working surface.

The shapes of the mating rack cutters do not coincide;
rather they are in tangency at points M1 and Mp.

We may represent all four circular arcs in the coordinate
system Sa(xa,ya,za) by the same equations

L (1)

- . _ (i) _ _ _ (i) _
a = pi51n6i b. Yy = (picosei ai), z, = 0 (2.1)

ll

Here: Py is the radius of the circular arc, a, and bi are
algebraic values which determine the location of the center of
the circular arc; Gi is the variable parameter which determines
the location of a point on the circular arc (Gi is measured

clockwise from the negative axis ya); P_ is the diametral pitch

n
in the normal section; and wc is the pressure angle. The element
proportions of rack cutters hl' h,, h3 and h4 are expressed in
terms of the normal diametral pitch, Pp.

It was mentioned above that equations (2.1) represent all
four circular arcs - the shapes of both rack cutters. Thus
equations

(F) (F)

X = p, sinb_~- b_, vy = -(p,cosb AF) = o (2.2)
a F F F a F

Fap) s a

represent the circular arc centered at CF (Fig. 2.1).

Knowing the normal section of the rack cutter, we may derive

11



equations of the generating surface using the matrix form of

coordinate transformation. Consider that a rack cutter shape is

represented in the coordinate system s;l) (Fig. 2.3 b) while the

coordinate system Sél) translates along the line d;) OSJ
(1) |

with

respect to S " ; OCOa = uy is a variable parameter. Using the
matrix equation
r W) _ ~ (1) S
Xq 1 0 0 0 xa'
y(i) 0 sinA;, ~cos)x, u, 6 cos) y(l) (2.3)
c |- 1 i i i a :
zél) 0 ~-cos). sinx. wu.sinj, z(1)
i i i i a
1 Lo 0 0 1 ) [ 1
we obtain (i = F, P)
(1) )
x?.) ’.9151"ei'bi
i -
yc. = -(picosei-ai)51nki_+ uicosAi (2.4)
(1) - a.)cosA + inA
z, = (picosei. ajlcos; + u;siniy

In the derivation of equations (2.4), we assumed that ai> 0 and
bi > 0, The unit normal to the rack cutter surface is given by

the equations

-(1) (1) (1)
. N . ar or
(1) _ _=~c (i) _ =¢ —c
e = N(i)l P BT = 56, X Tu; (2.5)

Equations (2.4) and (2.5) yield

sine1
(i), _ . (2.6)
[nc ]-— -c056151nkl
coselcos)\1




(a)

Fig.2.3
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(F) (P)
Consider that coordinate systems Sc and Sc coincide. Surfaces
(P)

and Zc will be in tangency if the following equations are

satisfied
(F)  (® (A (&  (F) _ (P)
X, =X Y, =Y, o Z =z (2.7)
(F) (P) (F) (P) (F) (P)
n = n , N = n n = n (2.8)
Xc Xc yc yc zZC zZC

Equations (2.4), (2.6), (2.7) and (2.8) yield that surfaces Ip
and Zp are in tangency along a straight line a-a (Fig. 1.3, a) if

the following conditions are satisfied.

cr Up = VUpr Ap = Aps (op - pp)siny, = b, -b,

F (2.9)

Here: V¥ _ is the pressure angle.

c
The normal sections of the gear teeth do not coincide with
the corresponding normal sections of the rack cutters.
Neglecting this difference we may identify the normal sections of
gear teeth with the normal sections of rack cutters. The shapes
of the gear teeth in the normal section are shown in Fig. 2.4,
These shapes are in tangency at points M; and Ms. Considering the
two sides of the teeth, we have to consider two pairs of
surfaces, ZF and ZP. Each pair of these surfaces is in tangency
along a straight line a-a (Fig. 1.3 a) and point Mi(i = 1,2)
lies on a-a. The shape normals at M., and M_ pass through point

1 2
I which lies on the instantaneous axis of rotation and coincides

14
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. (F)
with the origins 0a and Oa for the position shown in Fig. 2.1

and Fig. 2.2

3 Tooth Surfaces of Gear 1 and Gear 2

We set up three coordinate systems: Sc and S1 rigidly

connected to the rack cutter and gear 1, respectively, and the
fixed coordinate system S¢ (Fig. 3.1, a). Note that in Fig. 3.1

a, the fixed coordinate system S_ coincides with the auxiliary

f
coordinate system S

h.
The derivation of the gear tooth surface Zlis based on the
following considerations: (Here 21represents gear 1 tooth

surface, see also Appendix 1I)
The line of contact of the generating surface chith the

gear tooth surface Zl may be determined in the coordinate system

Sc by using the following equations:

1
N - viel) = f(u,,6,.,¢,) =0 (3.1)
~C ~C i 11

Here: rc(ujj ei) is the vector function which represents in the

~

coordinate system S+ the generating surface; N, is the normal
to the generating surface; and yéCI) is the relative velocity.
The subscript "c" designates that the vector components are
represented in the coordinate system SC. In the case of
transformation of motions represented in Fig. 3.1 a, the axodes

are the plane m and the cylinder of radius r;,and I-I is the

instantaneous axis of rotation in relative motion. We may derive
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the equation of meshing as follows:

Ko-X = ¥o-¥o = Z.-Z¢ (3.2)
N N N
xc yc zc

Equation (3.2) expresses that the normal to surfaces Zc and 21
at their points of contact intersects the instantaneous axis of

rotation, I-I. Here

Xc= 0, Yc= r1¢1, ZC= L

are the coordinates of I-I.

Equations (3.2), (2.4) and (2.6) yield

(r1¢1 - chos)\F - aF51nAF)51neF + choser1nAF=
(ci) (ci) )
Here: X = ~-b_, ¥ = aF:are the coordinates of center CF
a F a
(Fig. 2.1)

The equation of meshing (3.3) and equations (2.4) of the
generating surface ZC , considered simultaneously, represent a
line on surface Zc(line Lp) which is the line of contact of Z,

and 21. The location of this line on Zc depends on the parameter

of motion¢l. In the case of by = 0 equation (3.3) vields that

_ Ty9; — agsinig (3.4)
u 4
F [efe} ] )\F

for any op
Thus the line of contact is a circle of radius pF(E&g. 3.2 a).

18




CONTACT LINES
(b.=0)

CONTACT LINES Ry
( bp #: O ) \\_//

Fig. 3.2

19




Fig. 3.2 b shows the contact lines for the case with b_# 0. It

¥
results from equation (3.3) that
r1$y
up = choteFtanAF + cosAF - aFtan)\F (3.4

The contact lines approach infinity as eF approaches zero.
Surface Zl may be determined with the family of contact
lines represented in the coordinate system Sl. Using the matrix

equation

(2] = [2e) B ] = [l se ) -

[ cosdq -sin¢1 0 rl(cos¢1 + 9, sin¢>1)T i éz)q

sin¢1 cos¢1 0 rl(sin¢>1 - ¢1 cos¢1) ;z)

0 0 10 2%) (3.5)
L0 0 0 1 J L1

and equations (2.4) and (3.4), we obtain

X, = (ppsineé; = b + r )cos¢,
+ (choseF - choteF)sin¢lsian

Yy, = (stineF - bF + rl)sin¢1 (3.6)
- (choseF - chifeF)cos¢lsian,

z, = choschos}ﬁ-Eagrg + choteFtan)\Fsin)\F + r1¢1tan)\F

Equations (3.6) represent the tooth surfaces of gear 1 with

surface coordinates GF and ¢1. To get the normal section of this

v

20




surface, we have to cut the gear tooth surface by the plane which
is drawn through the axis Xy perpendicular to the tooth direc-
tion in plane m (Fig. 1.3, a) The cutting plane is represented
in the coordinate system S, by the equation (Fig. 3.3)
= - 3.7)
v, zltan)\F (

Equations (3.6) and (3.7) considered simultaneously yield the

following relation between Op and ¢; .

Asint + Bcosp + DO =E (3.8)
I 1 I 1 I1 I
Here
A pF51n6F - bF + ry ,
1 51nAF
By = -choseF + bIcotGF
2
I 1 51nAF
ap 2
E; = —choseF + s - choteFtan XF
cos AF

Considering that BF is given, we may determine ¢1 using equation
b

(3.8). It is easy to verify that ¢1 = 0 with tanGF = —EE
F

We may represent the normal section of Zl in the coordinate

t S*( * * *) h
system X z where
19 lyl v 1 ’
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* * *
Xy = X3, ¥q = ylcos)\F + zlsinAF, z, = —ylsin}\F + zlcos)\F

(3.10)

Equations (3.7) and (3.10) yield

*
1= %y =02 =55 (3.11)

The sought-for normal section may now be represented by the

following equations:

A¥31n¢1 + Blcos¢1 + DI¢1 = EI

x1 sinAF(AIcosq)1 - BIsin¢1) ' (3.12)
*

y, =0

z

[l

-—EI + DI¢1

Here Ai' BI and EI are functions of eF(see equations (3.9)). The

x; - axis is the axis of symmetry of the normal section.
Equations similar to (3.12) can be used for the deter-
mination of the normal section of the "fillet" surface, but we

(£) o (£) (£)
> 8 F’

. (%)
have to substltutepF ,BF ,bF and ap by Pp v Up bF and a

respectively (Fig. 2.4 and Fig. 2.1). The circular arcABE
represents the fillet of the rack cutter in the normal section,
points D and E are the points of tangency of this circular arc
with the upper and lower parts of the shape of the rack cutter
(Fig. 2.1).

Equations (3.12) are of a general nature and they can be

used for all cases of the generation of gear 1 with a rack cutter

23




having the shape of a circular arc. 1In particular, these
equations may be used in the case of generation of the "fillet"
surface of involute gears.

Similarly, we can derive equations of the tooth surface of
gear 2. The equation of meshing of the rack cutter P and gear 2
is given by

(r2¢2 - upcosAp - apsin}p)sinep + bpcosepsinxp =

fp(up, ep, ¢2) =0 | (3.13)

(P)

The line of contact of and 22 is represented in Sc by

c
eguations

(P) L
X. ppsSingy b,
yép) = -(choseP- aP)sin)\P + chotepsin)\P

-aP51nAP + r2¢2 . (3.14)
(P) _ _ P .
z = chosepcosAP coskp + chotGPtanAP51nAP+ r2¢2tanAP

The coordinate transformation from SéP)to s, is represented by

the following matrix equation (Fig. 3.1 b):

[IZ] ) [ M2P]@PC] [rép)] )

I , I 17, @)]

cos¢2 s1n¢2 0 0 W 1 0 0 -r, x?P)
—sln¢2 cos¢2 0 0 0 1 0 —r2¢2 Yo _

0 0 10 o o 1 0 2 \P)

| o 0 0 1 ] |o 0 0 1 JLlr

24




-

i - + ] 7 [ (P)-
cos¢2 51n¢2 0 rz(cos¢2 ¢zs1n¢2) x?P)
-sin¢, cos¢, 0 r2(51n¢2 - ¢zcos¢2) Y.
0 0 1 0 2 (%) 1(3.15)
| o 0 0 1 ] 1
Equations (3.15) and (3.14) yield
X, = (pP51n6P - bP - rz)cos¢2
- (choseP - bP cotep)51n¢2 51nAP
(3.16)
Y, = -(pPs1neP- bP - r2)51n¢2
-(chosBP- choteP)cos¢2 51nAP
2p
z, = chosePcosAP— EBEX; + bbcoteP51nAPtanAP + r2¢2 tan>\P

We will determine the normal section of 22 by cutting the gear

tooth surface by the same plane as we cut I Considering

1.
simultaneously equation (3.16) with the equation

y, = —zztan)\P (3.17)

we get
. - .18
A;rsing, + BIIcos¢2 + DII¢2 Erq (3.18)

Here:

25



51n6P- bP— Y

Ay _ P 2
I 51nAP
BII= -choseP + bP coteP
2 (3.19)
tan XP

D__= Y, —————
II 2 51nAP

ap 2
EII= —choseP + 5 - chotGPtan AP

cos AP

we may represent the sought-for normal section,in the coordinate
system S;(x;, y;, z; ), whose orientation with respect to 82 is
similar to the orientation of SI with respect to Sl(Fig. 3.3).
Using equations

] *

which are similar to equations (3.11), we may represent the

normal section of S_ as follows

; 2
|
A1151n¢2 + BIIcos¢2 + DII¢2 = EII
*
- - ; 3.21
X, ( AIIcos¢2 + B1151n¢2)s:|.n)\P ( )
v =0
"2
* =
| z, =B+ Dr1é

Equations similar to (3.21) represent the normal section of
| the "fillet" surface. To derive these equations, we have to sub-

(£) o (5)

i (£) (£) .
stitute pp,ely bPand ap by Pp » BPp s and ap”'in equations

(3.19). The normal section of the "fillet" surface of the rack

26




cutter P is represented in Fig. 2.2.

4 Principal Curvatures and Directions of Gear Tooth Surfaces

The principal curvatures and directions of two contacting
surfaces are necessary to define the size and direction of the
contact ellipse at the contact point. If the relations between
the principal curvatures and directions of two surfaces which
are in mesh are known, the solution of this problem can be signi-
ficantly simplified. Such relations were worked out first by Dr.
F. L. Litvin,

Step 1: Principal curvatures and directions of the

generating surfaces ZF and ZP

The rack cutter surface ZF and ZP and their unit normals are
represented in the coordinate system Sc by equations (2.4) and
(2.6), respectively. The principal curvatures and directions for

a given surface may be obtained by using Rodrigues’ equation [5]:

= -1 4.1
“I,1I ¢ Py (4.1)
Here: KI IT are the principal curvatures; y& is relative
r

velocity of the point of contact in its motion over the surface,
and br is the velocity of the tip of the unit normal in the above
motion. Equations (2.4) and (2.6) yield the following

expressions for the principal directions and curvatures:

27




(1) cos8

du, . v
i_ (1) _ ~xrI : . (1) _ _ 1
(1) at = Or EI V(i) - SIneiSIn)\i ’ KI - H;L
~rl .
51neicosli
(i = F, P) (4.2)
0
(1)
dse . (i)
(2) gt =0, igp= ElA cosh; |, Ky =0, (1= F, P)
(i) o
YrII sin)i (4.3)

Subscripts I and II designate the two principal directions and

curvatures; the unit vectors iil) and i{;)

coordinate system Sc but they are represented in the coordinate

are given in the

system S_. by the same matrices. The above unit vectors may also

£

be considered as the unit vectors of axes Yy and z, of the

coordinate system S, which is rigidly connected to the rack

t
cutter surfaces, ZF andzP (Fig. 4.1). The unit vector of the

X, - axis coincides with the common unit normal to surfaces ZF

and ZP along their line of tangency, axis Z . Centers CF.and

Cp are the centers of the principal curvatures KéF) and Kép)

(Fig. 4.1 ¢).
(1)

The column matrices [1I

t] which represents the transformation of

] and [ig;h may be also derived by
using the matrix [Lf
direction cosines in transition from St to Sf. Using the drawings

of Fig. 4.1 ¢, Fig. 2.3 and Fig. 3.1, we obtain

[Lft] - [Lfc] [Lca] [ Lat] -

28
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siné6, i
i cosb . 0 0
-cosf.sin) sin6.si M. 1
i i nd;sink, cos)\i . i ]- LfJ .
coseicosxi -sineicosAi sinAi 0
0
[.(iq [
1t )% | Bee 0
1 (4.4)

where: 1 F, P and

eiis the pressure angle (FIg. 4.1 <c¢)
Step 2: Principal curvatures and directions of Zl.

We may determine the principal curvatures and directions of Zl

by using the following equations:

(1)
tan 20(F1) _ _2F (4.5)
LFI B )
K(l) + K(l) = K(F) + éF) + S(l) (4.6)
I I I I1
(F) (F) (1)
(1) (1) K1~ %1t
KI - KII - cos 20(F1) 4.7
1) (1)
R - é(l) FT) (), D, 1) ) D (4.8)
b + (v A )a + (Y R )a32
& - [a31)]2 B )]2 (4.9)
(1) (Fl) (F) (1) (F1) . (F) (1) :
+ (v ) az;t + (v TippT)ag;
1
{1 [azlﬁ? 23 ) (4.10)
bl1) (~(F})1(F)) L (O )
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oD - LD ] ® e e (1.11)

aly = [0 GFD 1 E] B (D 40 (4.12)

b = [P D ] [P B ] (4.13)
All the vectors of equations (4.5) - (4.13) are represented in
the coordinate system Sf and the coordinate system Sh coincides
with Sf (Fig. 3.1); K(Il) and KI(:I[) are the principal curvatures of
Z, ,O(Fl) is the angle which is formed by vectors i~(IF) and i(Il)
where i~(I1) is the unit vector for the principal direction I(l) on
surface ):l;K(F) = - p—l- and Kg) = 0 are the principal curvatures

F
of Z:F . Let us derive the following auxiliary equations

0
Q(Fl) - 2)(1?) _ 9(1)___ ‘Q(l) =10 (4.14)
(1)
w
Vector Q(F) = 0 because the rack cutter performs translational
motion (Fig. 3.1 a)
E R S B PEEY (4.15)
[§F) Q(Fl) ~I(1;)] = -w(l) sinbp cosAg (4.16)

The point of contact of surfaces 21 and 22 lies on a straight

line which passes through the point whose coordinates are given

by

31



n

ppSing, = b+ r, (4.17)

- mF cosBF- choteF)sinAF (4.18)

a
F .
Pp coschquF -EBEXE- + chotGFtanAF51nAF + r1¢ltanAF

(4.19)

Here GF = 6P= ® is the pressure angle at the point of contact of

surfaces I

1

and 22. Equations (4.17) - (4.19) may be derived

from equations (I.9) with Mg = 0 taking into account that the

coordinate system S

of the rack cutter is (Fig.

o (F)

~tr

h coincides with Sf.

3.1, a):

The transfer velocity

r, (4,.20)

The transfer velocity of a point of gear 1 is given by

(1)

~tr

(1)

~w

s
9(1) X fél) = 1) _xél) _
0

- b i
(choseF FcoteF)51nAF

. (4.21)
pF51n6F - bF + r1

0
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The sliding velocity is given by

Fl F 1 1
Y( ) | Y( ) _ Y( - m( ) (choseF - choteF)sin)\F (4.22)
PpS inBF - bF
0

Thus, we obtain (see equations (4,21), (4.2) and (4.3)):

(F1) (F)  (1)/ by .
Y' . EI = w ‘OF-ETBF' 51n)\F (4.23)
v(Fl i(Fj = dl) -—EE—— sin g_cos) (4.24)
~ « II Pp sineF F F :

Using equations (4.11), (4.12), (4.15), (4.16), (4.23), (4.24)

(4.2), and (4.3), we obtain

(1) (1) bpsink

F
a ==W —— (4.25)
31 pF31neF
(1) (1) .
a32 = =@ 51nchosAF (4.26)
Using equations (4.13), (2.6), (4.20) and (4.21), we get
(1) ‘ 2
== [n(1) i 4.
b3 Qu ) r151neF (4.27)
. . ) (1) (1) (1)
We may now derive the final expressions for F ¢ G and S
follows :
bF
(1) 3—31nAFcosAF
F =- _F (4.28)
Al '
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b_.sinA 2
0 N N 2
(1) ) sinb sin“@cos"AL

P
Ay
bF sinl 2
£ __El, .2 2
(1) pp sinbg *sin 6pcos AL
s == = (4.30)
1

Here

.2
b b_.sin“\
s _°F F F ., _. 2 2
Al = r151neF+ L@. sineF][stineF + sin chos AF] (4.31)

Equations (4.5) - (4.7) and (4.25) - (4.31) determine the
principal curvatures and directions of surface Zl at the point

of contact of surfaces 21 and):2 .

Step 3: Principal curvatures and directions of I

2
(P)
The principal curvatures of the rack cutter ZP are: k; = 1

(P) _ 0; the principal directions of Zp are the same as of ZF-

“11
Using similar derivations, we obtain

0
(P2)
o = 0 (4.32)
_m(2)
-
() (P2) (P)] (2) [ (P)_ _(F)
nooy EI = o sing n =n (4.33)
[ (P) (P2) (P)] (2)
n W EII = w sinepcosAP (4.34)
(2)
Xeg = pPsinOP— bP -r,+c (4.35)
(2)
Y¢ = —(ppcosep- chotGP)sinAP (4.36)
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(2) ap

ze = ppc_:osepcosAP- Cosi + chotBPsinAPtanAP + r2¢2tan>\P

(4.37)
0
g) = _w(2)r2 (4.38)
0
y{2)
~t(:i) = 9(2) X ~£2)+ C x w(z) = (2 -x(fz)+ c (4.39)
0
Y(PZ) = ..15_1;) - ~é12:) = -m(z)(ppcosep- choteP)sin)\P
pPsineP - bP (4.40)
0
(P2) _ (P) (2) by . P)_ . (F)
Yoo I 770 (pP ~ sind simhpr Qp =10 (4.41)
b

(P2) ;(P)_ _ (2) ___P : (P)_ . (F)

oo iz ® (P sinb, $inf,cos >‘p' (II_~II)
(4.42)

(2) (p) (P2) .(P) (P) (P2) (P) 2) b sinAP

i I IR - 2 I - Sty
(4.43)

(2) (p) (P2) (P) (p) (P2) (P) _ (2)

ay, = n W irr |- KI[(Y . 311) = @ SIDBPCOS)‘P
(4.44)

' 2
(2) (P) (2) (P) (P) (P) (2) (2)
b3 = [ D w Ytr ] -[{l W ~tr]—<m )rzsinep(4.45)

~ ~
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2(2) _(2)

F(Z) _ 31 32
= (2) (P2) . (P) _(2) ®2) . () _(2)
by +<Y . 1y )a31 + (Y D alE )a32
EE - sinl_cosA (4.46)
— Pp P P
- A
2 b_sin\ 2
2] PP - . 2 2
G(2) _ (a:gl))z_ (a:(é) _(pPsinGP sin“g cos®),
Q}25 A 2 (4.47)

. \ 2
b.sin
2 2 pSifip . 2 2
(2) (2) —_— + sin“6_cos“A

g(2) _ (a31) +(a32 ) =\PpSiné, P P
Here A, A, (4.48)
. - bp bPSinZAP 2 2, \ (4.49)

= r,sinf_ - - i .
2 2 P Pp sinB; /\ pp sinf + sin"BycosTA,

The principal curvatures and directions of 22 are determined as

follows
(P2) (2)
tan2 g = 2F (4.50)
1 (2)
-2 4+ G
Pp
(2) (2) _ _ 1 (2)
Ki T+ kY7 = o + S (4.51)
1
al— (2)
(2 _(2)_ Fp *6C
K - K = (4.52)
I 11 cos 20 (P2)

Example 4.1: Principal Curvatures and Directions of Gear Tooth

Surfaces
Given: The rack parameters pp = 0.7JJF,DP = 0.7751" (See

Fig. 2.1 and Fig. 2.2); the gear parameters: No. of teeth N,=

36




12, Nz = 94; lead angle AF ==XP = 75°; nominal pressure angle
6" = 30° normal diametral pitch P = 2;

(1) Ppinion: By using equations (4.5) - (4.31) we obtain
A, = 1.70882, F'M)= —0.02549, M= -0.05648, s(})= _0.07608,
principai directiono(Fl)= 0.98294° (Fig. 5.1), and two principal
curvatures: V= -1.49520, {1 = -0.00936.

(2) Gear 2: By using equations (4.32) - (4.52), we obtain
A, = 11.98175, F{2) = 0.00429, 6(2) = 0.01179, s(2)= 0.01458,
principal direction o(P2)= -0.19237° (See Fig. 5,1), and two

principal curvatures: KI‘Z) = -1.27715, KI(12)= 0.00141.

5. Contacting Ellipse

The tangent plane to gear tooth surfaces is formed by axes yg

_ , (F,P) _(F,P)
and zy (Fig. 5.1 a). The unit vectors i and 1II represent

~ ~

the principal directions of surfaces ZF and ZP of the rack

F,P
cutters. Angles G(Fl)and Cﬁpzl measured counter-clockwise from gl' )
determine the principal directions of gear tooth surfaces 21 and sz

(1) (2)
respectively, with the unit vectors i, ~ and i, .
: fad (1) (1) (2) (2)
Consider that the principal curvatures KI R KII A Kll r KT
of surfaces Zl.and 22 are known. Also known are angles O(Fl) and g (P2

We may then determine the dimensions of the axes of the
contacting ellipse with respect to the elastic approach of gear
tooth surfaces and the orientation of the contacting ellipse in
the tangent plane T. The equations to be used are as follows

[5,6]:

>
[}
=

[K(zl) - K(zz) - (gi - 2glg2c0520 + gg ) ;5]
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(b)

CONTACTING
ELLIPSE

2a
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w
]
N

[(1)_ (2) 4 (gi - 29, 9,c0s20 + g§ )!.5 ]

Kg Kz
(5.1)
B 28| .
a A! ’ b Ig:
sin 2a = gzsin 20
cos 20 = gy - 9, coOs 20
(1) (1) (1) (2) (2) (2) (1) (1)
BHere: Ky =K71 + K11 5 KZ = Ky + KIT r91='<I - KII o
(2) (2) _ (p2) (F1) .
gz-KI s a=0 -0 ; 6 is

the elastic approach of gear tooth surfaces;a and b are the axes
of the contacting ellipseanda is the angle which determines the
orientation of contacting ellipse. Angle a is formed by the

n - axis and unit vector ?EJ and measured counter-clockwise from
axis n to i;l)(Fig. 5.1 b). Axes n and £ are directed along the
b- and a-axis of the contacting ellipse. The magnitudes of a and
b are expressed in terms of the elastic approach§ which can be

obtained from experiments or calculated.

Example 5.1: Dimension and Orientation of Contacting Ellipse

The nominal rack and gear parameters are the same as given

(F1)

in Example 4.1. 1In Example 4.1, we found o = 0.98294°,

owﬂ):= -0.19237°; the two principal curvatures for pinion

surface I, are K(1)= 1.49529 and K{i)= -0.00936, and two
principal curvatures for gear surface 22 are K{§)= -1.27715 and

K{i) = 0.00141. By substituting these values into equation
(5.1), we obtain A = 0.1110, B = 0.0035, a = 3.0028,

b = 16.91588 and a = 82.9392°.
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6 Velocity of Motion of the Contacting Ellipse Over Gear
Tooth Surface

The velocity of motion of the symmetry center of the
contacting ellipse over surface Zl is represented by the

foilowing equations {[5,6]:

ajXy * 31,%, = by
ay1%X; * ax%; = by (6.1)
az)¥; + azyX; = b
Here:
_ (1) 1, (2) .
a;7 = ~%; 2( 5 + g200520),

a12 = a2f=%gzsin20

ayp = =57 + 3 (542)- g,cos20)

ay =[§(1)~w(12) ~;1)] (D (12, ),

a2 <[4 1] - P O 1)

by =[nM 12 1) L2 1)) (D g, cos20)
- %(y(lz) (1))g251n20

b, =[Q(1)9(12) ﬂ’ 2(2(12‘) iil))gzsifﬂo
- %(y(12) i(l))(KQZ)- g,C0s20)

b, =[9(1)(2(2) Yéi’] - [2(1)9( )~é§)]

(2)_ K{Z)"‘ Kg)' g, = Kéz)_ K(2)
X1 = Yél) ~£1) ¥2 T Yél)' ~§i)

Kéi)and K{%)(i = 1,2) are the principal curvatures of surface

Li; o is the angle formed by the unit vectors 1(1) and 1(2)
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. . (1 . .
and measured counter-clockwise from 5} ) to {éz) (Fig. 5.1 a);

. (2 . . . .
;gJ and 3&) represent the principal directions of surfaces 21

and 22. n is the unit normal to the contacting surfaces

represented in the coordinate system S¢ by equations (I.2); @(1)

and g“z)are the angular velocities of gear 1 and Z,Q(lz)

w(l)-m () : gé;) is the transfer velocity of the contacting

ellipse in the transfer motion, with gear i (i = 1,2). Here: v(l)

R A L A R R

~ ~ ~

~tr

is the

position vector of the point contact represented by equations (4.17) -

(4.19); ¢ = (r1 + r2) i; V(12)= Yéi) - Yéﬁ) is the sliding

velocity. Considering the coordinate system Sf , wWe have

stinGF - bF + r,
(1)

re = | -(choseF - choteF)sinAF
ar .
choschosAF - EBEX;' + choteFtanAF51nAF-+ r1¢1tanAF
- (6.2)
‘”ffl) = “*’(1)5 (6.3)
(2) (2) ry (1) (1)
vg Sk S{rjJe F Tmype X (6.4)
(1)
Yp
(1) (1 (1)
0
2 2 2
Xér) - w( ) r%) + Cx 9()
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(12)

~

wll2) -

f

~£

Using coordinate transformation, we can transform g

12
e

(1)
v
~ET ()

Sg to Sq by using Fig. 2.3, Fig. 3.1, Fig. 4.1

We obtain:

NGV

(2)
r Ver

(1)
NE D I = myy otV
0
(1) (2)
v - v
~tr(f) ~tr(f)
yf(l) (1 +m,,)
w(l) -xél) (1 +-m21) + m,qC
0
. .
(1) (2) (1)
wf - mf ® 0
-(1 + m21)
sineF
-cosGFsin)\F
cosBFcos)\F

(£)

(12)
’ QEf

[Fat] = [ae] [ Fea] [Fac] [ et]

sxneF
= cosercoso F,1)

oserinow'n

s1n6Fcosc

-sinerino

(F,1)

—s;nAF coseF
(F,1)

sinAF + sino (F

sinAF + COS0 (F

1)
21)

42

cos)\F

coses cCOoSA

sxneF51nc

c and Fig.

(1)
£

cosAF -sinchoso(F’ll:os)\F-f’sino(F']'gin)\F

1!:osAF+coso(F’]'gin)‘F

’ Q{f

(6.6)

(6.7)

(6.8)

(6.9)

’

, and nél) from coordinate system

6.1 a.

(6.10)




(a)

(b)

Fig. 6.1



(1)

L

1
s
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(1) _ (1)
og" = [Pae][4e]
coseF cosAF
= —m(l) —sinchoso(F'l)coskF + sinc(F'l)sinA
F
sinerinc(F’l)cosAF + cosc(F’l)sinAF (6.11)
(2) _ (2)
- [qu] [mf ]
coschosAF
(1)}]-sine coso(F’l)cosx + sino(F'l)sinA
= mye F F F
. .__(F,1) (F,1)_.
51neF51no cos)\F + cosg "’ 51nAF (6.12)
(1) = (1)
Urle = [Fat) [Ver o)
-
yt(.l)sineF + xél)sinkFcosef
= yél)coschoso(F'1)-J%§sinepcoso(F'l)sinAF + sino(F'l)cosAF}
L—yél)coserino(F'1)—£§k-sinerino(F'l)sinkF + coso(F’l)cosAF}k
(6.13
(2) = (2)
Yer(q) ~ [qu] vtr(f)]
-yf(l)sineF - (xél)— c)sinAFcoseF
(H} _, (1) (F,1) (1) _ ; (F,1)_; . (F,1)
. Yg  cos®pcoso P (xg c){51nchoso **7sinip + sino ’ cosAF}
(1) .__(F,1) (1) _ e .. (F,1)_. (F,1)
L Y cos8psing A (xf c){ 51n6F51no **7sinAg+ coso cosAF}
~q qf £
)(1 + m,,)sin6, - {—x(I‘I + m,,) +m,,c} sinicosb
21 F f 21 21 F F ¢
1 F,l 1 : F,1)_. . (F,1
yé )(1 + mzl)coschoso( ')+{—xé N1-+nb1)-+m21c}@1nBFcoso '“’sinip+sino ' EosAF)
-yél) (1 + n21)coserinc(F'1)+{-—x(fl) (1 +m21) +m21c}(—sinerina(F’1)sin)\F+coso‘F’1)cos)\F)
(6.15) J




9412) - [qu][wéIZ)]

(1 + m21)coschos)\F
= -l (1 + mzl)(--sinchoscr(F'l)cos)\F + sinc;F'l)sin)\F) (6.16)
(1 + mzl)(sinBFsino(F'l)cos)F + coso(F'l)sin)\F)
o - [ra] ]
1
=10 (6.17)
0

Also, we may represent the unit vectors iél) and £](:%) of the principal

directions of surface 24 in coordinate system Sq as follows: (Fig. 6.1Db):

KN
i =1 (6.18)
t 0
L -l
| 0
| (1) _
i;; = 0 (6.19)
3 1 -
[P(l)@,(lz) E{l)]= P(l)' (9(12))( E](:l) ") - _wz(é2)
= m(l) (1 + m21) (sinerino(F’l)coskF + coso (F’l)sinkF)
(6.20)
' (1)  (12) (1) (1) ,,(12) (1), - ,(12)
| [P ¢ .}II]— nt (e * ) ®yva
= -m(l) (1 + m21) (—sinchosc (F'l)cos)\F + sinc (F’l)sin)\F)

(6.21)
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[Y(l%) iél)]= w(l){l4xél)(1 + m21)+ m21c][sinOFcoscayl)sinAF+-sinouvlnxmlF]

+ yél)(l + mzl)cosqFCOSC#F'l)} (6.22)

[v(la) (l)] uﬁl){[-xélkl + myy) + my, c][-sinepsinJF’léinAF-+cosoﬁvlbosAF]

~ 111
(1 i (Fp1)
- Yg Y1+ m,, )cosb sinc } (6.23)
M @ (W] D, (2 ()
[’3 ® ~tr]'~q (6q "% Yer(q)!
2
= m21(m(10 [—yél)coserinAF + xél)sineF]
(6.24)
(1) (1) (2)] L (2)
[2 g ~tr] %q (9q X Yer(q))

m21<w(1)> [- y(l)cose sin, + (x(l)- c)sineF]
(6.25)

An easier method of deriving equations (6.20) - (6.25) is to

consider the tangent plane in Fic. 4.la and the twc unit

(1) (1)

vectors 1 and 1 II along the two principal directions of gear

surface Zl.

The projections of {‘ ) 1(11) along axis Xe s Y and Z, are

expressed as:

(1)
iIt = cosc(F'l) (6.26)

sino(F'l)

(1)
irre =|-singFs1) (6.27)

coso(F'l)
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using the matrix transformation of direction cosines in transition

c), we obtain

[ec)[Feal [ ae]

from S, to Sf (Fig. 4.1

[Fee]

smeF coseF 0
= - i i 1 6.2
coserm}\F smeF51n)\F cos>\F ( 8)
coschos)\F -51n6Fcos>\F sum)\F
0
(1) (F,1)
il [Lft] cos o
sinU(F'l)
(F,1)
= coseF coso
. . (F,l) > (Fll)
sin@psinigcoso + cosAF51no (6.29)
. . (F,1) . (F,1)
sing@gcos A\gsing + sm)\Fcoso
0
(1) _ o (F,1)
iy = [Lft]‘ singo
coso(F’l)
= -coserino(F’l)
F,1
-sinerin)\Fsinc(F'l)+ cos)Fcoso( 1) (6.30)
(F,1) (F,1)

shinchosAFsino
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(12) _ (1) _ ,(2)
v = Vier Ver (6.31)
(2)

=m(1)x rél) - lo X rél) + Sxm(z)]
where: c = (r1 + r2) i
(1) _ (F)
re s [Mfc][rc ] (6.32)
i T, B
1 0 0 rl X
_ 10 1 0 -rj¢, yéF)
o 0 1 0 2 (F)
c
o o o 1 {1 |

stmeF- bF + r,

- Pp coseF- choteF )s in)\F

a
ppcost pcoshp —Sogn- * Dy cotbptanipsinip + ri9;tanip
F
(6.33)
o (1) _ _ m(l)}j
o (2) _ ‘”(2)'.5
=m oDk (6.34)
21 ~
(2) ry
where: m = —u_ ==
021 m(l) r,
(1) _ (1) (1)
Ytr (f.) X Ef
( choseF- chotGF) sinA F
= - (1) 3 -
W pF51neF bF+ rl {6.35)
0
(2)_  (2) (1) (2)
Vep e xrgtexu (6-36)
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1 ] k i 3 k
w(2) + c 0
(1) (1) (1) (2)
Xg Ye' ' Zg 0 0 o
- (1)
Ye
= my o xft- e
0
(12)_. (1) _ _(2)
Y .‘.’tr Ytr
(1 +m, )y (6.37)
= m(l) m,,c - (1 + m21)xé1)
0
W12 (D 2)
0
(6.38)
= 0)(1) 0
-(1 + m21)
(1) _ (F)
n} —[Lfc] [nc ] (6.39)
—1 0 0 sineF
=10 1 0 -coserin)‘F
_0 0 1 coschosAF
[ sineF
= —coserin}\F
cos'chosAF
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[‘1(1)9(12)3:-](:1)] - D(l.) (9(12))( 3:I(:l))
(F,1)

= m(l)(l + m21)[sin>\Fcoso + sinchosAFsino(F'l)l (6.40)
[ 492 8] =3 ) (00 4
= w(l) (1 + m421)[-sin>\Fcoso(F'1)+ sinchoskFcoso(F’l)]
(6.41)
3(1.2),5;1(1) = w(l){yél)(l + m,,)cosé coso (F,1), [m21c—xf(1)(1 +m,,
(sinerin)\Fcoso(F'l)+ cosAFsino(F’l))} (6.42)
Y(l?) Eﬁ) w(l){—yf(l)(l + m21)coserino(F'1)+[m210 - )éfl) (1 +
(cosBFcoso(F'l)— sinerinAFsinc(F’l))} (6.43)
(2@ ei] = 2@ x v
sineF if gf ~kf
= —coserin)\F 0 0 mzlw(l)
cosercosAF uﬁl) y(.r}) - m(l)x(jlf) 0
= (w(l)) m21[sin6Fxf(1) - coserinAFyf(l)] (6.44)
(2 P2 ] = a D@
sinGF if if Ef
=l-cos erin)\F 0 0 —w(‘

)

(1) (1) (1) _
coschosAF M, Ye © m21(xf c) 0

(L)Y ; (1) - ¢)- ; (1)

(m ) m,,[sind (x} c)-cos@ sini vy’ ]
(6.45)

Comparing the expressions in equations (6.20) - (6.25) and (6.40)

- (6.45) we obtained the same results. Substituting these

expressions into equation (6.1), we get the coefficients asqr as,
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bl' b2 and b3. Equations (6.1) represent a system of three

linear equations with two unknowns:

= ¢ (1), Q1) = v(1) ;0
159 "1 X5 Y, 111) (6.46)

where zl(,l)is the velocity of motion over the gear tooth surface Zl‘

These equations provide a unique solution for x1 and x2 if the

following condition is observed [5,6]:

aj;; 3, by
ay; 25, byl=0 (6.47)
a a b

It is assumed that surfaces Zl and 22 are in point contact at

every instant. Using any two equations of the system equations

(6.1) we may determine Xy and X,

An alternative method of deriving the relative velocity vr(l)

and thus VI('1)= (x(12)+ x(22))!~i
at the point of contact M is:

Step 1 The point of contact of surface 21 and Zzlles on a

straight line which passes through the following

equations:

x(fl) = Pgsinbp- bg + ry

Yj(fl) = - ( pgeost, - ch:teF)sinkF

(1) _ F .

Ze = DFcoschos>sF- Soshy + bcot eFtan)\F51n)\F+ rlcpltanAF

(6.48)
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Here, 6F= GP = 0 = 30° is the pressure angle at the point of con-

tact of surface 21 and 22

Step 2 The transfer velocity yéi) of a point on gear 1 is:

CRNE
o0
=1 -xf‘” (6.49)
0

Step 3 The direction of absolute velocity ngs of point M of

gear 1 is parallel to the axes of gear rotation z(lh

f
Hence
(1)
V(l) } dzf
-abs dt
bF dGF d¢J
= (- stmGFcos)\F--—' > tanAF51n)\F) at t (rl'tanAF) I
sin GF
(6.50)
de a¢
* —E - —1= (1) -
Here: T3 0 and It W . Therefore, we have:
0
(1) _
Yabs 0
(1) .
rlm tan)\F (6.51)
Step 4 The relative velocity yél)of point M of gear 1 is:

w'V

v is tangent to the helix of gear 1)




(1) (1)_ (1)

Ver + Vr " Vabs
1) - (1) _ 1)

vil) = vl - v

eY

T e

ritanig (6.52)

(2)

The velocity v,

of the motion over surfacel, may be determined by

using the following equations [5]:

(1) (1) _ _(2) (2)
Jr *r T X% * Ver (6.53)

Equation (6.53) yields

(2) _ (1) (1) _ (2)_ (1) (12)
Jr ot Yy Ver = V.tV (6.54)
where véz)is the relative velocity of the contact point M of gear

2; v(lz)is the sliding velocity expressed in equation (6.7).

Example 6.1: Relative Velocity of Motion of the Contacting

Ellipse Over the Gear Tooth Surface

The rack cutter and gear nominal parameters are the sane
as given in Example 4.1.
(1) We may determine the relative velocity in the motion of
the contacting ellipse over the gear tooth surface I; by using

equations (6.1) - (6.46). Then we obtain X; and X,, thus

(Lo (y2 2\% _ (1)
V: = (X1 + XZ) = 12.06574 o

(l)and axis Z(l)

and 0 = 16.1479° is the angle formed by Yr £ .
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]

(2) By using equations (6.48) - (6.52) to solve Yél), we

obtain

(1) (1) _ (1) _ (1)
Yr = Yabs Ytr = 12.06706 w

(3) From equation (6.54), we have

(2)
Vr

~

= 11.99259 (1)

and B = 14.8674° is the angle formed by Yéz)and axis Zéz).
Note: Due to a lot of computational procedures and matrix
transformation for approach (1), there is a small difference
between the approaches (1) and (2), and approach (2) is better

than approach (1).

7 Computer Aided Simulation of Conditions of Meshing

We simulated the conditions of meshing of gears, which have
some errors, using the equations of continuous tangency of gear too
surfaces. We set up four coordinate systems: Sj; and S5, rapidly
connected to the gears and Sy and Sf, rigidly connected to the
frames. By using the coordinate transformations from S; via Shp
to Sg, we may represent the equations of the surfaces I;(i =
1,2) and its surface normal in coordinate system Sg¢.

The conditions of continuous tangency of gear tooth surfaces

Z1 and I, are represented by the following equations [5,6]:

it (0p, 0, wp) = 8P eL, 0,0 wy) (7.1)
ngt (6p, up) = nf? e, wy) (7.2)
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Equation (7.1) expresses that surfaces I; and L, have a common
(1) (2)
£

point determined with the position vectors r and r
Equation (7.2) indicates that surfaces I; and I, have a common unit
normal at their common point. Equations (7.1) and (7.2) when
considered simultaneously yield a system of only five independent
equations, since [gél)l = I§(2)1= 1. These five equations

relate six unknowns: eF, ¢i, 61, ep, ¢2, ¢é, and thus one of these
unknowns may be considered as a variable.

8 Influence of Manufacturing and Assembly Errors, and Adjustment
of Gears to the Errors

(i) Change of Axes Distance

Fig. 8.1la | and Fig. 8.1b show that the operating center
distance C' is not equal to the sum of the radic of pitch
cylinders in this case; Thus C' # r; + rp. Considering the gear
tooth surface I, and its unit normal np, and gear tooth surface I,
and its unit normal n, are represented in the coordinate systems
S1 and S, respectively. We may represent I; and nj (i =1,2) in

the coordinate system Sg¢ using the following matrix equations:

[=e7] ~[ea] [=:] (¢-1)

where (Fig. 8.1):

cos¢i sin¢i 0 0

[Mfl] = —51n¢i cos¢i 0 0
0 0 1 0

| 0 0 0 1
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i cos¢é -sin¢é 0 c' ]
[ Mfz] = sin¢£ cos ¢; 0 0
0 0 1 0
0 0 0 1
(8.2)
(1) - T
and [nf ] _Lfi][nl]
where: [ cosﬁ sinﬁ 0 1
[Lf1]= -51nq cosq 0
0 0 1 |
- -
cos¢£ -sin¢é 0
[Lf2]= 51n¢é cos¢é 0
| 0 0 1 ]

¢i and ¢é are the angles of rotation of the gear in mesh with
the mating gear, whileq)1 ami¢2 are the angles of rotation of gear
1 and gear 2 in mesh with the corresponding rack cutter.

Using equations (8.1), (8.2) or (I.9) - (I.14) and (7.1),

(7.2) yield the following procedure for computations:
Step 1: Using equations Agg = Jfg r» we obtain

coschosAF = cosePcos)\P (8.3)
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Equation (8.3) withAF = AP = X yields that

Step 2: Using equations A;% = A;% ’ yél) = ;g) and é%) = éz) ’

we obtain the following system of three equations in three

unknowns ( 6 r Uy anduz )

sinesinpl - cosesinxcosu1= -sinesinuz— cosesinkcosu2 (8.5)

. _ . . _ . + . . _
(pF51ne bF) (singsinyy c05651nxcosu1) r 51n651nu1

1
- sin® - (singsinuy + cosfsinjpcosu ) + r sin@siny (8.6)
(pp_ by) u2 “2 ) u2

. _ . + . . . _
(pF51n6 QF) (51n6cosu1 005651nA51nu1) + rlsmecosu1
(pp51ne - bp)(51n6005p2 - c05651nA51nu2) - r,sinfcosy, +
C'sineg (8.7)

ithere: C' = ry + r, + AC and AC is the change of center distance.

The solution to these equations for 6, uland pzprovides con-
stant values whose magnitude depends on the operating center dis-
tance C' only (the change of 'the center distance, AC). The loca-
tion of the center of the contacting ellipse is detemined by 6 (AC).
Thus, the bearing contact also depends on AC.

We may check up the solution to equations (8.5), (8.6) and
(8.7) using the equation n(xlf)= n(xzf) which yields

sinecosu1 + cosesin)\sinp1 = sinecosuz- cosesinxsinp2

Step 3: Knowing g, we may determine the relation between para-
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meters ¢;and ¢,using equation é%) = z&?)which yields

a

F ;
pF,cosecosA oS + chotetanA51nA + r1¢1tanx =
%p
- + 1
ppcosecosl oSk chotetanAs1nx + r2¢2tanA (8.9)

Equation (8.9) provides a linear function which relates ¢1and ¢2

since 6 is constant.

Step 4: It is easy to prove that since e,ul and pzhave constant
values, the angular velocity ratio for the gears does not depend on

the center-distance. The proof is based on the following

considerations: (i) Equation (8.9) with 6 = const yields that

d¢sy _ r2

d¢2 rl
. ' v

¢é are constant, we obtain that d¢1— d¢1, d¢2 d¢2,and

r1d¢1 = r2d¢2 and ; (ii) Since M= ¢4~ ¢iand Mo= 6, -

e
=
Q
©
[y
H
N

- S S (8.10)

€

o

-
N

Step 5: It is evident that since e,ul and uzhave constant
values, the line of action of the gear tooth surfaces represents,

in the fixed coordinate system Sf, a straight line which is

parallel to the zge - axis. We may determine the coordinates x

and y;i)(i = 1,2) of the line of action using equations (I.9) or

(i)
£

(I.12)(see Appendix I). The location of the instantaneous point
of contact on the line of action may be represented as a function

of ¢7:
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a
z%l) = PLCOSBCOS) -cozx + bpcotftanisini + rjl(uy + ¢j)tani

(8.11)
Step 6: We may also derive an approximate equation which relates

6 and the change of the center-distance, AC. Since 1 and uj are

small, we assume cospj; = 1 and sinui = 0 in equation (8.7). We

then obtain

p.sing - b_+ r. = p_sinéb - b, - r, + C'
F F 1 P P 2 (8.12)
where C° = r1 + r24- AC
Equation (8.12) yields
Sine _ AC + bF - bP (8 . 13)

Pp = Pp

The nominal value of 6° which corresponds to the theoretical

value of the center distance C, where C = ri+ ry, is given by

o _ o
bF bP

sinb® = —% 9o (8.14)
PP = Pp

Compensation for the Location of Bearing Contact Induced by AC

The sensitivity of the gears to the change of center

distance, AC, may be reduced by increasing the difference

pF"’P"
However, this results in the increase of contacting stresses.

The dislocation of the bearing contact may be compensated

for by refinishing of one of the gears (preferably the pinion)
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with new tool settings.

Consider that 0° is the nominal value for the pressure
angle; b; and b; are the nominal values for the machine settings
and p;,p; are the nominal values for the radii of circular arcs.
These parameters are related by equation (8.14). The location of
the bearing contact won't be changed if the pinion is refinished

with a new tool setting bF determined as follows (see equation

(8.13):
AC + b, - b®
sin6° = —a (8.15)
Pp T Pp
b_ = b; - AC (8.16)

Change of Machine-Tool Settings bF andbP

The change of machine-tool settings bF and bP causes: (1)
the change of gear tooth thickness and backlash between the
mating teeth, and (ii) the dislocation of the bearing contact.
The most dangerous result is the dislocation of the bearing
contact.,

Using similar principles of investigation, we may represent
the new value of the pressure angle which corresponds to the

changed machine-tool settings by using the following equation

b_.=- b
sing = ——%;——g (8.17)
PP Pp




Here: bF and bP are the changed settings; bF ¥ b; ’ bP 7 b; ’

where b§ and b; are the nominal machine-settings; 6 # 6°is the
new pressure angle.

We may compensate for the dislocation of the bearing contact
making 6 = 8°, This can be achieved by refinishing of the pinion

with a corrected setting AbF. Similar to equation (8.15) we

obtain

b, - b® + Ab
sinf°® = F 5 P F

P = P32
F P

(8.18)

(ii) Misalignment of Crossed Axes of Gear Rotation

Consider that the axis of rotation of gear 1 is not parallel to
the axis of rotation of gear 2 and form an angle Ay (Fig. 8.2). The
coordinate transformation from Sy to Sg is represented by the

matrix equations

[ [ ), [ [oo] 44

where:
1 0 0 o | 1 0 0
[th]= 0 coshy sinlAy 0 : [LfR]= 0 cosAY sinAY
0 -sinAy cosAy 0 0 -sinAy | cosly
| O 0 0 1 i

Using equations (8.19), (1.9)-(I.12) and (7.1), (7.2), we may

represent the tangency of surfaces Zland szor crossed misaligned
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gears as follows:

AjcosHy = Bysinky + C = Ajcosyy + Bysiniy (8.20)

U}

-Azsinuz - Bzcosuz

(Alsinul - Blcosul)cosAy +
a

_°F . .
(choschosxF-83§E§+ choteFtaan51nAF + r1¢1tanAF)51nAy
(8.21)
(see expressions (I.11) and (I.1l4) in Appendix I)
a
F . =
ppcosepposlp- Eagx;+-bpcot6P51nAPtanAP + r2¢2tan)\P =
. . ap
-(Alslnu1 - Blcosul)s1nAY + (choschosxF— 36§7f+
choteFtankF31nAF + r1¢ltanAF)cosAY (8.22)

51nePcosu2- coseP51nAP51nu2 = smchosu1 + coserm)\Fsmp1 (8.2:

—51n6P31nu2— cos6P51nAPcosu2= (51n6F51nul - coseF51nAFcosu1)
cosAy-FcoschosszinAy (8.24)
cosepcoslp= -(51n6F51nu1- coseF51nAFcosu1)51nAy +
coschosAFcosAY (8.25)
Equations (8.20) - (8.25) form a svstem of five independent
equations in six unknowns: GP, GF, My, ' 9 1and ¢2. We remind

that only two equations from equation system (8.23) -(8.25) are
independent sinceln(1)|= 1 andln(zq = 1.
The computational procedure is as follows: (i) We consider

equations (8.20), (8.21), (8.24) and (8.25) which form a system

of 4 equations in five unknowns: eF ' 6p PUp T, and ¢ ;e Fixing in ¢

we may obtain the solutions by eF(¢1), BP(¢1),ul(¢l) and p2(¢1);
(ii) Using equation (8.22) we obtain ¢2(¢1); (iii) Then, using

the equations

"1

¢i = q)l s ]—ll ’ ¢é = ¢2 = 112 (8.26)
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(iii)

we can obtain the relation between the angles ¢£ and ¢i<3f gear
rotation. Function ¢é(¢i ) is a non-linear function and its

deviation from the linear function is given by

8O3 (1) = ¢5(83) - —= ¢ (8.27)

Here: A¢é(¢i) represents the kinematical errors of the gear
train and 6 (¢i) and 6, (¢;) represent the change of location of

the bearing contact induced by the misalignment of gear axes.

Misalignment of Intersected Axes of Gear Rotation

In the case of intersected axes of gear rotation, two axes
form an angle Ay (Fig. 8.3). The coordinate transformation from

S, to S_ is represented by the matrix equations:

h £
[=M] - EN [r}(ll)], (2] - [ten] [] (8.28)
where
i cosAy 0 -sinby 0 ]
[th] =] ©° 1 0 0
sinAy 0 cosAy 0
L 0 0 0 1
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[L ]= cosAy 0 -sindy
0 1 0

sindy 0 cosly

using equations (8.28), (I.9) - (I.12) and (7.1), (7.2), we may
represent the tangency of surface 21 andilzfor intersected

misaligned gear axes as follows:

Azcoslb-stinu2-+C = (Alcosu1+ Blsinul)cosAy-

a
F . .
(choschosAf-ESEX;+ choteFtanAF51nkF + r1¢ltanAF)51nAy (8.29)

-A251nu2 - Bzcosuzi: Alsinul- B, COosHq (8.30)

chosePCOSAP"cosAP + chotGPs1nAPtanAPi: r2¢2tan>\P =
. . F
(Alcosu1+ 3151nu1)51nAy + (pFCOSSFCOSAFr'ESETE + choteFtanAF
51nAF + r1¢1tanAF)cosAY (8.31)
51n6Pcosu2- cosGP51nAP51nu2 = (51n6Fcosul+ coseF51nAF51nu1)
cosAy-coschosAFsinAY (8.32)
-51n6P51nu2— cosGPSJ.n)\Pcosu2 = 51n6F51nu1 - cos6F51nAFcosp1 (8.33)
cosepcosAP= (sinchosu1 + cosBFsinAFsinul)sinAY*cosoFcosAFcosAy
(8.34)
Equations (8.29) - (8.34) form a system of five independent
equations in six unknowns: GP, GF, Hyr Uy ¢1 and ¢2. Only
two equations from equation svstem (8.32) - (8.34) are

independent. The computational procedure is the same as we

discussed before.

Compensation for the Location of Bearing Contact Induced by the

Gear Misalignment
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The dislocation of the bearing contact induced by
misalignment of the axes of gear rotation may be compensated for
by the change of the lead angle AF(or AP). This can be done

technologically by refinishing of the pinion.

Example 8.1: The Influence of Change of Axes Distance

Given: the rack parameters (see Fig. 2.1 and Fig. 2.2); the

r

gear parameters: No. of teeth.N1 = 12, N, = 94; lead angle AF = AP
= 75° nominal pressure angle 06°= 30°; normal diametral pitch Pn =
2; nominal axes distance(C=27.43482 in.;change of axes distance
AC = 0,021 in. Due to the change of axes distance the new value
of the pressure angle 6 is: (i) 6 =12.82082° (exact solution
provided by equation system (8.5) - (8.7)); (ii) & = 12.70903°
(approximate solution provided by equation (8.13))

The compensation for the dislocation of bearing contact is
achieved by the new machine setting bE‘= b, -0.021 in. which

F
provides 6 = 6°= 30° although C = C° + AC,

Example 8.2: The Influence of Misalignment of Crossed Gear Axes

The rack and gear nominal parameters are the same as shown
in Example 8.1. The misalignment of crossed gear axes is given
by Ay = 0.1° (Fig. 8.2). The kinematical errors A¢é and the
change of 6p and ep are given in Table 1.

The compensation of kinematical errors is achieved with the
change of the lead angle of the pinion Ap= 75.10° (4Ap = 0.10°).

The kinematical errors after compensation are given in Table 2.
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Table 1. Kinematical Errors

: 6 8 8¢5
¢1 F P (seco%ds)
-20° 32.2603° ) 31.6606° 59.88"
-10° 32.2610° | 31.6613° 29.94"
0° 32.2613° | 31.6616° 0.00"
10° 32.2613° | 31.6615°] -29.94"
20° 32.2609° | 31.6611°] -59.89"

Table 2. Compensated Kinematical

Errors
¢1 eF eP (sézénds)
-20° 29.9988° | 29.9989° -0.00"
-10° 29.9996° | 29.9996°| -0.00"
0° 29.9999° | 29.9999° 0.00"
10° 30.0000° | 29.9995° -0.00"
20° 29.9996° | 29.9995° -0.00"

By using the proposed method of compensation we could

reduce sub-

stantially the kinematical errors induced by the misalignment of

crossed axes of gear rotation (kinematical errors approach zero).

Example 8.3:

in Example 8.1.

The Influence of Misalignment of Intersected Gear

Axes

The rack and gear nominal parameters are the same as shown

given by Ay =

The misalignment of intersected gear axes is

0.1° (Fig. 8.3).

change of BF and ep are given in Table 3.

The compensation of

The kinematical errors A¢é and the

kinematical errors is achieved with the change of the lead angle

of the pinion AF = 75.06°(A>‘F = 0.06°).

with compensation are given in Table 4.

The kinematical errors

Table 3. Kinematical Errors Table 4. Compensated Kinematical
Errors
Aol Al

%1 | %F ®p (secofids) ®1 | bF ®p (secofds)
-20° 38.1358° | 37.7508°] 42.57" -20° 37.1275° | 37.0376° 5.17"
~10° 34.7987° | 34.4138°| 19.98" -10° 33.5327°{ 33.4847° 1.21"
0° 31.5911° | 31.2063°| -0.00" 0° 29.9883° | 29.9898° 0.00"
10° 28.4910° 28;1062° ~17.65" 10° 26.4191° | 26.4823° 1.30"
20° 25.4817° | 25.0969°}~-33.19" 20° 22.6873° | 22.8334° 4.98"
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By using the proposed method of compensation, we could reduce the
kinematical errors induced by the misalignment of intersected

axes of gear rotation.

9. Computer Aided Simulation of Bearing Contact (With Computer

Graphics)

We simulated the bearing contact of gears by setting up two
coordinate systems: S1 and SZ’ rigidly connected to the gear 1
(pinion) and gear 2, respectively (Fig. 3.1). Due to the
computer graphics system, the figures showed in this section are

two dimensional computer graphics.

Fig. 9.1 showed the normal crossed section of gear 1
(pinion) in coordinate system S1 (Fig. 3.1 a), there are 12
teeth on the gear 1. We simulated gear 1 by considering the
equations (3.6) - (3.12), the Xq and Yy, axes are the axes of
symmetry of the normal section. As we discussed in Chapter 3,
it is important to mention that the normal section of the "fillet"
of gear 1 can be simulated by using the same equations which we

simulated the normal section of the working part and substituted

(£), o(5)

F e ' béf), and aéf) in equations

Ppr GF, bF and ap by o
(3.6) - (3.12).

Fig. 9.2 showed the normal cross section of gear 2 in

coordinate system 82 (Fig. 3.1 b), there are 94 teeth on the
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gear 2. We simulated gear 2 by considering the equations (3.16)
- (3.21), the X 5 and Y, axes are the axes of symmetry of this
normal section. As we mentioned above, the normal section of the
"fillet" of gear 2 can be simulated by using the same equations
which we simulated the normal section of the working part, and
then substituted Ppr SP ' bP and a, by pg:-), O(Pf), b(g) and aI()f)

in equations (3.16) - (3.21)

Fig. 9.3 showed the front view of gear 1 and the orientation
of contacting ellipse of bearing contact when the center distance
did not change. It should be mentioned that the size of
contacting ellipse showed in Fig. 9.3 depended on the value of
elastic approach § . Also, the contacting ellipses showed here
was a side view (the projection on x - z plane). Fig. 9.4 showed
the same case for the gear 2.

Fig. 9.5 showed the bearing contact of gear 1 due to an
increased of center distance 0.02 inches. Fig. 9.6 showed the
same case for the gear 2. From these two figures, we found that

the size and magnitudes of two axes of contacting ellipse are
changed a lot, this prove that circular arc helical gears are
very sensitive to the change of center-distance.

Fig. 9.7 showed the bearing contact of gear 1 due to the
misalignment of crossed axes of gear rotation for 1.0 degree.

The size and magnitudes of two axes of contacting ellipse were not
changed significantly. Fig. 9.8 showed the same case for the gear :Z.
Fig. 9.9 showed the kinematical errors due to the misalignment of

crossed axes of gear rotation for 1.0 degree with and without
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compensation. From this, we prove that using the proposed method
of compensation discussed in Chapter 8, we can cause the

kinematical errors to approach zero.

10. Conclusion

The authors have presented a method of generation of tooth
surfaces for circular arc helical gears, derived the basic
equations which represent the geometry of gears, and proposed a
computer aided method for simulation of conditions of meshing and
of the bearing contact for these gears. The sensitivity of the
gears to the change of center-distance, machine-tool settings
and to the misalignment of axes of gear rotation have been investi-
gated. A technological technigue for the compensation of the

dislocation of the bearing contact induced by the above errors

have been proposed.
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12. Appendix 1 Gear Tooth Surfaces

Gear 1 Tooth Surface. Substituting subscript "i" by "F" in equa-

tions (2.4) and (2.6) and taking into account that bF >0,

we obtain:

2 pF31n8F - bF j
r(F) _ -(choseF - aF)51n>\F + chosAF
o = (I.1)
(choseF - aF)cosAF + quinAF
L 1 -
sineF
[n(F)] = | -cosbrsinig (1.2)
c
coschosAF

Equations (I.1) and (I.2) represent the generating surface
ZF and the unit normal to this surface. We may derive the equation

of meshing using equations (I.1l), (I.2) and (3.2) with

7 (F)

x{Flo o, y{F) =1 (I.3)
C C C

= Iy,

(F) Y(F) and Z(F) are coordinates of the point of inter-

where X ’
c c c

section of the normal to ZF and the instantaneous axis of rota-

tion, I-I (Fig. 3.1, a). We then obtain

fF(uF, GP, ¢1) = (r1¢1- choskF - aF51nAF)51n6F +

4
choserin)\F = 0 (1.4)
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Equation of meshing (I.4) yields

r.¢, - a,sini
171 F F + chotBFtan)\F (I.5)

F cosAF

Equations (I.1l) and (I.5) when considered simultaneously represen
a family of contacting lines on surface ZF. Eliminating Up, we

may represent this family of lines of contact as follows:

- (F) - . _
X ] ppsinéy - by
(F) _ o .
Yo - (pFSJ.nGF bF)cotGFs1n>\F + r1¢1
(F) 2 ap
| zc | L(stn.neF + than AF)cotchosAF - cosAF + r1¢1tan>\F

(I.6)

Using equations (I.6) and the coordinate transformation from

S(F)to S. we obtain
o] 1

X, = (stinGF - bF + rl)coscb1 + (choseF - chotSF)51n¢lslnA
Yy = (stineF - bF + rl)sin¢1 - (choseF - choteF)cos¢1sinA
a
- _ __F .

z, = choschosAF cosAF + choteFtanAF51nAF + rlq)ltan)\F

(I.7)
The surface unit normal is given by
51n6Fcos¢>1 + cosGF51nAF51n¢l
[nl] = 51n6F51n¢1 - cos6F51nAFcos¢1 (1.8)

cosBFcos)\F

Using the coordinate transformation from S1 to Sh we obtain
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(1)

h = Alcosul + Blsinu:l
1 .
Yé ) = Alslnul - Blcosu1
zél) = ppCOsdpcosi, - °F + bcotb_tanA_sinA_ +
F cos)\F F F F F r1¢1tanAF
(1.9)
51nchosu1 + coseF51nAF51nul
[n(lq= sin6_sinu, - cosf.sinA_cosyu (1.10)
h F 1 F F 1 .
cosGFcos)\F ]
L
Here:
Al(eF) = stineF - bF + Ty Bl(eF) = (choseF - chotGF)sinXF,
i - ]
and Wy = ¢; = ¢; (I.11)

Equations (I.9) and (I.10) with a fixed value for ¢i, represent
in the coordinate system Sy surface i and the unit normal to
IZ1. These equations with different values for ¢i, represent
in Sh' a family of surfaces I and the unit normals to these
surfaces.

The derivation of equations for gear 2 surface I, and its
unit normal is based on similar considerations. We may represent

these equations in Sg¢ as follows:

(2) _ _ .
Xe = Azcosu2 B251np2 + C
(2) _ _ . _
yf = A2s1nu2 Bzcosu2
z(z) = p,cosb_cosA, - __EE_ + b_cotb_sinA_tani_ + r,¢,tani
£ P P P cos)\P P P P P 272 P

(I.12)
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51n6Pcosu2 - cosGP51nuP51nu2
n(z) = -sinb_siny., - cosf_sinA_cosu
f P 2 P P 2
(I.13)
cosGPcosAP
L —
Here:

Az(ep) = pPsineP - bP - Ty, Bz(eP) = (choseP - chotep)sinAP,

and uy, = ¢, - ¢, (I.14)

The nominal value of the center distance is C = ry + r,.
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List of Symbols

(Note: i =1,2; d =F, P)

a Half the length of major axis of contacting
ellipse.
ag Algebraic values which determine the location
of the center of the circular arc.
agi) Auxiliary function defined in Egq. (4.11)
(1) " "
232 Eq. (4.12)
(2) " "
azy Eq. (4.43)
a(2)
32 " " Eq. (4.44)
A " " Eq. (5.1)
By " " Eq. (3.9)
" ”n
Arq Eqg. (3.19)
b Half the length of minor axis of contacting
ellipse.
bd a parameter of tool setting
ba Nominal value for the machine settings
b;l) Auxiliary function defined in Eq. (4.13)
b(2)
3 " " Egqg. (4.45)
B " " Egq. (5.1)
B " " Eq. (3.9)
BII " " Egq. (3.19)
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F
(f)
Cp
p
(£)
p
Dy
D1
E;
Erq
£ (3)
_ (1) _ (1)
9; = K Ki1
_ «(2)_ (2)
9, = K; Kr1
<)
.(d) . (d)
i1 ¢ 111
(1) (1)
1 T 11

center of working part of circular arc
rack cutter F

center of the fillet of circular arc
rack cutter F

center of working part of circular arc
rack cutter P

center of the fillet of circular arc
rack cutter P

Auxiliary function defined in Eq. (3.9)

" " Eq. (3.19)
" " Eq. (3.9)
" " Eq. (3.19)

Auxiliary function defined in Eq. (4.8),
Eqg. (4.46) to compute the principal direc-
tions of surface Ij

Auxiliary function defined in Eg. (5.1) to
determine the size of contacting ellipse

Auxiliary function defined in Egq. (5.1) to
determine the size of contacting ellipse

Auxiliary function defined in Eq. (4.9),
Eq. (4.47) to compute the principal cur-
vatures of surface Ij

unit vectors along principal direction of
surface Zd

principal curvatures of surface Ij
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S22, 2

r;(u;,6;)

[¢7]

S; (x5+¥;,25)

g (i)

Auxiliary function defined in Eg. (5.1)
Auxiliary function defined in Eg. (5.1)

projection transformation matrix; trans-
formation from S. to Si

]
point of contact of tooth surface

coordinate transformation matrix; trans-
formation from S. to Si

J
surface d unit normal

relative velocity of the tip of the unit
normal vector n,

surface d normal vector
Diametral pitch in normal section

position vector represented in the coor-
dinate system Sc

Pitch radius of gear i

surface Ij position vector with surface
coordinates (uj, 6j)

coordinate system rigidly connected with
frame

Auxiliary coordinate system h

coordinate system rigidly connected with
gear i

Auxiliary function defined in Eq. (4.10),
Eg. (4.48)
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(1)
Yabs

(12)
Ve

AC

Ay

eo

generating surface coordinate

Absoclute velocity of the point on the
surface I

Relative velocity represented in coordinate
system S¢ of a contact point on surface Ij
with respect to contact point on surface Ij.

Relative velocity of contact point on surface

Z

Transfer velocity of contact point on surface

Z

Transfer velocities of points on surface
Z; in coordinate system 1.

Relative velocity of point 2 with respect to

point 1 (v{21)= v{2)_ v{l))

Angle of the orientation of contacting
e%{%pse measured from axis n to the unit vector
i

;hange of center distance (inches)
misalignment of gear rotation axes
Approach of surface &3 and I3
Nominal value of the pressure angle

pressure angle of gear d

variable parameter which determines the
location of a point on circular arc gear i

helical gear i lead angle
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=
[
]

h =
N
]

g (F1)

(P2)

(1)

e

Auxiliary function
Auxiliary function

Radius of working part of circular arc
rack cutter 4

Nominal value for the radius of circular
arc

Radius of fillet of circular arc rack
cutter d

generating surface d
generated surface of pinion and gear

Angle form by principal direction of
two surfaces measured from i{l) to }éZ)

and positive angle for counterclockwise

Angle measured from iéF)to the unit vector
i{ ); positive if counterclockwise

Angle measured from i(P)to the unit vector

iéz); positive if counterclockwise

-~

gear i rotation angle in mesh with the
corresponding rack cutter

gear i rotation angle in mesh with the
mating gear

kinematical error function defined in
Eq. (8.27)

pressure angle

gear i angular velocity
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